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Abstract

Numerical methods such as boundary element methods are widely used for the stress analysis in solid mechanics.
These methods are also used for crack analysis in rock fracture mechanics. There are singularities for the stresses
and displacements at the crack tips in fracture mechanics problem, which decrease the accuracy of the numerical results
in areas very close to the crack ends. To overcome this, higher order elements and isoperimetric higher order elements
have been used. Recently, special crack tip elements have been proposed and used in most of the numerical fracture
mechanics models. These elements can drastically increase the accuracy of the results near the crack tips, but in most
of the models only one special crack tip element has been used for each crack end. In this study the uses of higher order
crack tip elements are discussed and a higher order displacement discontinuity method is used to investigate the effect of
these elements on the accuracy of the results in some crack problems. The useful shape functions for two special
crack tip elements, are derived and given in the text and appendix for both infinite and semi-infinite plane problems.
In this analysis both Mode I and Mode II stress intensity factors are computed . Some example problems are solved
and the computed results are compared with the results given in the literature. The numerical results obtained here
are in good agreement with those cited in the literature. For the curved crack problem, the strain energy release rate,
G can be calculated accurately in the vicinity of the crack tips by using the higher order displacement discontinuity
method with a quadratic variation of displacement discontinuity elements and with two special crack tip elements at
each crack end.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the fracture analysis of brittle substances (like most of the rocks), the Mode I and Mode II stress
intensity factors can be calculated by numerical methods using ordinary element. The accuracy of the
numerical results are increased by using isoparametric elements and crack tip elements (Ingraffea and
Hueze, 1980; Ingraffea, 1983; Blandford et al., 1982; Ingraffea, 1987; Guo et al., 1990; Scavia, 1990; Hwang
and Ingraffea, 2004). Boundary element method is one of the powerful numerical methods and has been
extensively used in fracture mechanics (Aliabadi and Rooke, 1991; Aliabadi, 1998). Displacement discon-
tinuity method is an indirect boundary element method which has been used for the analysis of crack prob-
lems related to rock fracture mechanics and in most cases the problem of crack tip singularities has been
improved by the uses of one crack tip element for each crack tip (Guo et al., 1992; Scavia, 1992; Shen
and Stephansson, 1994; Scavia, 1995; Tan et al., 1996; Carpinteri and Yang, 1997; Bobet, 2001; Stephans-
son, 2002). Recently higher order elements have been used to increase the accuracy of the numerical results
(Crawford and Curran, 1982; Shou and Crouch, 1995).

In this paper the higher order displacement discontinuity method that was originally introduced for finite
and infinite crack problems (Shou and Crouch, 1995) is extended to the half plane problems with traction
free surfaces (Crouch and Starfield, 1983). The general series for the crack tip elements is discussed and the
required modification for implementation of the higher order special crack tip elements are given in Appen-
dix A. The mixed mode stress intensity factors (i.e. for Mode I and Mode II fractures, which are the most
commonly fracture modes occur in rock fracture mechanics) are numerically computed. As most of rocks
are brittle and weak under tension the Mode I fracture toughness Kic (under plain strain condition) to-
gether with the maximum tangential stress fracture criterion (g-criterion) introduced by Erdogan and
Sih are used to predict the crack propagation direction (Erdogan and Sih, 1963). The three fundamental
fracture criteria, the maximum tangential stress criterion (or o-criterion), the maximum strain energy re-
lease rate criterion (or G-criterion) and the minimum strain energy density criterion (or S-criterion) or
any modified form of these three criteria (e.g. F-criterion which is a modified form of G-criterion) have been
mostly used to study the fracture behaviour of brittle materials (Ingraffea, 1983; Broek, 1989; Whittaker
et al., 1992; Shen and Stephansson, 1994). All of these criteria have demonstrated that a crack in a plate
under a general in-plane load does not initiate and propagate in its original plane, but rather crack initia-
tion take place at an angle with respect to it. The Mode II fracture toughness, Kjjc predicted by o-criterion
and G-criterion are smaller than the Mode I fracture toughness, K¢, but it is generally larger than the
Mode I fracture toughness, Kjc predicted by S-criterion depending on the material parameter of the Pois-
son‘s ratio v (because S-criterion depends on v). The mixed modes I-II fracture problems in compression
have been shown to be more complicated and also quite different from those under tension. Various existing
fracture criteria have been applied to study the fracture problems in compression but the results are poorly
correlated to the existing experimental data (Whittaker et al., 1992). Although in brittle substances like
rocks Mode II fracture initiation and propagation plays an important role under certain loading conditions
and Mode I fracture toughness Kic is less than Mode II fracture toughness, Kyjc, but due to the weakness
(low strength) of rock under tension, the rock breaks due to tensile and in most cases the condition of Kjc
will prevail to that of Kjjc under pure tensile, pure shear, tension-shear and compression-shear loading con-
ditions. Recently, a lot of work has been done on the application of Mode I, Mode II and mixed Mode
fracture theories for rock type materials (Ingraffea, 1981; Atkinson et al., 1982; Huang and Wang, 1985;
Zipf and Bieniawski, 1987; Ouchterlony, 1988; Swartz et al., 1988; Sun et al., 1990; Fowell, 1995; Pang,
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Table 1

Mode I fracture toughness Kjc and Mode II fracture toughness Kjjc for some typical rocks (after Whittaker et al. (1992))
Rock type Kic (MPam'?) Kne (MPam'?)
Basalt 2.27 1.878

Newhurst Granite 1.72 1.750

Welsh Limestone 0.85 0.960
Coarse-grained Sandstone 0.28 0.360
Fine-grained Sandstone 0.38 0.420

Dark gray Syenite 1.75 1.180

Grayish white Syenite 1.36 0.830

1995; Stephansson et al., 2001; Backers et al., 2002, 2003, 2004; Rao et al., 2003; Shen et al., 2004). The
Mode I fracture toughness Kjc and Mode II fracture toughness Kj;c for some typical rocks are given in
Table 1.

Most of the existing numerical tools are based on the continuum assumption and rock failure is pre-
dicted by means of plastic deformation. Some recent numerical codes simulate the effect of existing frac-
tures explicitly, and some of them are designed to model the fracture initiation and propagation of
individual cracks. The recent fracture codes like FRACOD have been used (based on some useful mixed
fracture criteria like F-criterion) to model the fracture propagation mechanism in brittle materials like rock
(Shen and Stephansson, 1994). In the present work a general higher order displacement discontinuity meth-
od implementing two crack tip elements for each crack end is used and based on the linear elastic fracture
mechanics principles the mixed mode o-criterion (Erdogan and Sih, 1963) is implemented in this numerical
model to handle the fracture initiation and propagation mechanism in rock type material considering the
finite, infinite, and semi-infinite bodies. The emphasises is made on the uses of two special crack tip elements
which increase the accuracy of the computed Mode I and Mode II stress intensity factors near the crack
ends. Two equal crack tip elements have been used for each crack tip and the results seem to be more accu-
rate than using only one crack tip element (which has been used in most of the existing numerical codes).
The formulation given in Appendix A are in a concised form for both infinite and semi-infinite plane
problems.

The displacement discontinuity solution based on one and two special crack tip elements are thoroughly
explained and the required formulations are derived and given in the text and the crack propagation anal-
ysis is accomplished by using the o-criterion. This criterion compares the computed Mode I and Mode 11
stress intensity factors K; and Kj; with their corresponding material properties i.e. Mode I and Mode 11
fracture toughnesses Kjc and Kjjc (Guo et al., 1992; Scavia, 1992). It should be noted that any fracture
criterion can be implemented in the proposed method to study the fracture behaviour of brittle materials.
A 45° circular arc crack under biaxial tension has been solved to show the validity of the results obtained by
using the higher order displacement discontinuity program TDQCR?2 in which uses two special crack tip
elements at each crack end. Comparing the numerical and analytical values (i.e. the values of strain energy
release rate, G) calculated for this problem proves the validity and accuracy of the numerical results for
curved crack problems too.

2. Higher order displacement discontinuity method
A displacement discontinuity element of length 2a along the x-axis is shown in Fig. 1(a), which is char-

acterized by a general displacement discontinuity distribution u(¢). By taking the u, and u, components
of the general displacement discontinuity u(e) to be constant and equal to D, and D, respectively, in the
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Fig. 1. (a) Displacement discontinuity element and the distribution of u(¢); (b) constant element displacement discontinuity.

interval (—a + a) as shown in Fig. 1(b), two displacement discontinuity element surfaces can be distin-
guished, one on the positive side of y(y = 04) and another one on the negative side (y =0_).

The displacement undergoes a constant change in value when passing from one side of the displacement
discontinuity element to the other side. Therefore the constant element displacement discontinuities D, and
D,, can be written as

D, = u(x,0_) —u,(x,04), D, =u,(x,0_) —u,(x,0.) (1)

The positive sign convention of D, and D, is shown in Fig. 1(b) and demonstrates that when the two
surfaces of the displacement discontinuity overlap D,, is positive, which leads to a physically impossible sit-
uation. This conceptual difficulty is overcome by considering that the element has a finite thickness, in its
undeformed state which is small compared to its length, but bigger than D, (Crouch, 1976; Crouch and
Starfield, 1983).

2.1. Quadratic element formulation

The quadratic element displacement discontinuity is based on analytical integration of quadratic collo-
cation shape functions over collinear, straight-line displacement discontinuity elements (Shou and Crouch,
1995). Fig. 2 shows the quadratic displacement discontinuity distribution, which can be written in a general
form as

Di(g) = N1(e)D! + N1(e)D? + N3(e)D}, i=x,y (2)

1

where, D}, D?, and D; are the quadratic nodal displacement discontinuities, and
Ni(e) = e(e — 2a1)/8aj, Nai(e) = —(&® —4aj)/4a;, Ni(e) = e(e+ 2a,)/8a; (3)

are the quadratic collocation shape functions using a; = @, = a3. A quadratic element has three nodes,
which are at the centers of its three sub-elements (see Fig. 2).

The displacements and stresses for a line crack in an infinite body along the x-axis, in terms of single
harmonic functions g(x,y) and f{x,y), are given by Crouch and Starfield (1983) as

Element ———— ——

Fig. 2. Quadratic collocations for the higher order displacement discontinuity elements.
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Uy = [2<1 - V)f,y _yf,xx} + [_(1 - 2V)g,x _yg.xy]
= [ =2 . =2f W]+ 2(1 = v)g, =2,

and the stresses are

O = 2U[2f o, +3f o) +20g, + 8 )]
Oy = 201[—2f 1| + 2008, — 8 )] (5)
Oy = 2021, +3f ] +20[-yg ]

u is shear modulus and £, g ., f,,, g, etc. are the partial derivatives of the single harmonic functions f{x,y)
and g(x,y) with respect to x and y. These potential functions (for a quadratic variation of displacement dis-
continuity along the element) can be find from

-1 3. . 3
" 4n(l—v) ZchFj(loJlJz)’ g(x,») 1 — Z (Lo, 11, 12) (6)

=1 =1

f(x,)
the common function Fj, is defined as

Fi(lo,11,1,) = /Nj(s) In[(x —¢) —|—y2]%d8, j=13 (7)

the integrals [y, and I; and I, are expressed as

Iy(x,y) = /j In[(x — &)’ +y2]%ds =y(0, —0) — (x—a)In(r) + (x+a)In(r,) — 2a (8.a)
Ii(x,y) = /a eln[(x — &)’ +y2]%d8 =xy(0; — 0,) +0.5(0* —x* + d*) ln:—; —ax (8.b)

L(x,y) = / n[(x —&)> + )P de :§(3x2 — (0, — 6,) +%(3xy2 —x* +a’)In(r))

1 2 2
—3 (3xy* —x* — @) In(ry) — ?a (x2 -y + c;) (8.c)

where, the terms 0y, 0,, r; and r, are defined as

0, :arctan(xy ), 0, :arctan( 24 >7
—a x+a 9)
42

bk

n=lr—a’ 4 and = [r+a)

2.2. Higher order displacement discontinuity in a half-plane

Half-plane problems in solid mechanics can also be solved by infinite boundary element methods ex-
plained before, however, a more accurate and economic way for solving semi-infinite problems with a trac-
tion free surface, using the method of images, is originally introduced by Crouch and Starfield (1983) for
the constant element displacement discontinuity method. They used the analytical solution to a constant
element displacement discontinuity, over the line segment |x| < @, y =0 in the semi-infinite region y < 0
as shown in Fig. 3. The displacements and stresses due to the actual displacement discontinuity are denoted
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Fig. 3. Actual and image displacement discontinuities in half-plane y < 0, with a traction-free surface (Crouch and Starfield, 1983).

by u® and ‘73» those due to its image by u] and a}j, and those resulting from the supplementary solution by
u’ and ais].. The complete solution for the semi-infinite plane y < 0 can be written as

A 1S A T S
wi=u; +u;, +u; and o; =0, +o0;+0; (10)

Based on these formulas and using quadratic element formulations explained in the previous section, a two
dimensional semi-infinite displacement discontinuity computer program can be developed for the analysis
of rock fracture mechanics problems, in which uses two special crack tip elements explained in the next sec-
tion of this paper.

3. Higher order crack tip element formulation and stress intensity factor computation

The displacement discontinuity method permits the crack surfaces to be discretized and computes the
crack opening displacement (normal displacement discontinuity), and crack sliding displacement (shear dis-
placement discontinuity) directly as a part of the solution for each element. Due to the singularity varia-
tions 1/y/r, and /r for the stresses and displacements near the crack ends, the accuracy of the
displacement discontinuity method at the vicinity of the crack tip decreases, and usually a special treatment
of the crack at the tip is necessary to increase the accuracy and make the method more efficient. In this
study the hybrid elements are implemented in a general higher order displacement discontinuity method
(i.e. the quadratic displacement discontinuity elements and two special crack tip elements for each crack
end). Using a special crack tip element of length 2a, as shown in Fig. 4, the displacement discontinuity vari-
ations along this element are given as

e\l

g@:q@@fam a@:m@@) (11)

a

where ¢ is the distance from the crack tip and D,(a) and D(a) are the opening and sliding displacement
discontinuities at the center of the special crack tip element.
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Fig. 4. Displacement correlation technique for the special crack tip element.

The potential functions f(x,y) and gc(x,y) for the crack tip element can be expressed as

felry) = - (;1_ - / 2D - o2 )P

1
=a az
(12)
—1 “D (a) 1 1
ecle) = gy [ 2 nlGe— o + s
These equations have a common integral of the following form:
Ic = / #1n[(x —&)> + » P de (13)

For the higher order crack tip elements the following series can be used (Crouch and Starfield, 1983):

Di(e) :C13%+C28%+C33%+... "

In order to use two crack tip elements the first two terms of Eq. (14) should be considered, which can be
arranged in the following form:

Di(e) = [Nc1(2)]D; (@) + [Nea(e))D; (a) (15)

The crack tip element has a length a = a, + «, and the shape functions N¢(¢) and Nc,(¢) can be obtained
as

Nei(e) = M and Ngy(e) = —@ (16)

1

1
ai(ax — ay) ay(ay — ay)

The potential functions f-(x,y) and gc(x,y) for the crack tip can be expressed as

felx,y) = Wl—v) /_a D.(¢) In[(x — ¢&)* —|—y2]%dg (17.a)

a

) = gy [ DA nlts— o + 7 (17.0)
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inserting Eq. (16) in Eqgs. (15) and (17), gives

o) =g | [ el o ] ot | [ watey it - o + e 02} (180

1
fe(x,y) = (e (x,y)D} + Iea(x, y)D3) (— m) (18.b)
1 2
felx,y) = T p— ;D)/(FC/‘(]Ch[CZ) (18.c)
and similarly
1 2
gelx,y) = (-0 ;D;ch'(lcnlcz) (19)
in which
FCj(ICh]CZ) = / ch(S) ln[(x — 8)2 +y2ﬁd8, j = 1,2 (20)

From Eq. (20) the following integrals are obtained:

a 1 3

are2 — &2 1

Ler(x,y) = / BETE - o)t e, Teax,y)
- @i (a, — ay)

a I3 1
_ f/ _METE =) 407 de (21)

a a%(az — al)
These integrals can be arranged as

1 1 2 — 1 1 2
_ﬁlc——lc and Icz(x,y):llc—‘r—[c (22)

Ici(x,y) =
ai®y) dci dci dcr dcs

1
3

! 1
where dc) = a2 (ay — a1), dcy = a%(az —a), Ic = [*, gln[(x —e)’ —|—y2}%ds, and

2 ‘3 2, )
Ic= | @ln[(x—¢) +y2de (23)

a

The derivations of integrals }c and ;C which are used in the solution of the displacement discontinuities
near the crack tip for both infinite and semi-infinite plane problems are given in Appendix A.

Several mixed mode fracture criteria has been used in literature to investigate the crack initiation direc-
tion and its path (Whittaker et al., 1992; Shen and Stephansson, 1994; Rao et al., 2003). The maximum
tangential stress criterion (or o-criterion), is the used here to investigate the crack initiation and propaga-
tion direction. This is a widely used mixed mode fracture criterion which is well fitted with the experimental
results (Ingraffea, 1983; Guo et al., 1990; Scavia, 1992; Whittaker et al., 1992).

Based on LEFM theory, the Mode I and Mode II stress intensity factors K; and Kj; can be written in
terms of the normal and shear displacement discontinuities as (Shou and Crouch, 1995):

K= 4(1"_ 3 (2;>%Dy(a) and Ky = 4(1“_ 3 (ZZ>%DX(a) (24)
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4. Verification of higher order displacement discontinuity

Verification of this method is made through the solution of several example problems i.e. a pressurized
crack in an infinite body, a circular arc crack under biaxial tension and circular holes with emanating cracks
in infinite and semi-infinite bodies. These simple examples are used here because they have simple analytical
solutions and have also been solved numerically by other researches, so that the computed numerical results
in this paper can be compared and the validity of the proposed computer programs can be proved.

4.1. A pressurized crack in an infinite plane

Because of its simple solution, the problem of a pressurized crack have been used for the verification of
the numerical methods developed here. The analytical solution of this problem has been derived and ex-
plained by Sneddon (1951). Based on Fig. 5, the analytical solution for the normal displacement disconti-
nuity D, along the crack boundary, and the normal stress g, near the crack tip (|x| > b), can be written as

2(1 —v)P Px

D,:—ibz—xzi x>b and o, =——P, |x|<b 25

: R ) el (25)

v is the Poisson’s ratio of the body. Consider a pressurized crack of a half length b = 1 meter (m), under a
normal pressure P = —10 MPa, with a modulus of elasticity £ = 2.2 GPa, and a Poisson’s ratio v = 0.1

(Fig. 5).

The normalized displacement discontinuity distribution D, /b x 10° along the surface of the pressurized
crack are given in Table 2 using the constant (ordinary) displacement discontinuity program TWODD with
different crack tip elements (Crouch and Starfield, 1983). As shown in this table by using only one special
crack tip element, the percent error of displacement discontinuity D, at a distance x = 0.05b from the crack
tip, reduces from 26.12 to 8.59, and by using two special crack tip elements it reduces to 5.07.

The same problem is solved by the higher order displacement discontinuity method (i.e. TWODQ pro-
gram) using only 20 quadratic elements (60 nodes). The percentage error of displacement discontinuity D,
at a distance x = 0.05b from the crack tip will be about 5.82% (with out using any special crack tip element)
in which the results obtained by TWODD program with the same number of nodes (60 constant elements)
gives an error of about 24.17%. Therefore using this higher order program for calculating the normalized

Fig. 5. A pressurized crack in an infinite body.
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Table 2
Displacement discontinuity D,(a) at the center x = a of an element at the crack tip using ordinary elements, one special crack tip
element and two special crack tip elements

Number of Distance (Dy(a)/b) x 10°

elements from crack tip Analytical Ordinary One special Two special
solution elements crack tip element crack tip elements

4 0.25 —1.1906 —1.5463 —1.3275 —1.2150

10 0.1 —0.7846 —0.9964 —0.8569 —0.8202

20 0.05 —0.5621 —0.7089 —0.6104 —0.5906

40 0.025 —0.4000 —0.5029 —0.4332 —0.4212

displacement discontinuity distribution D,/b x 10% along the surface of the pressurized crack, gives more
accurate results (see Table 3).

The normalized normal stress (o,/P) near the crack tip and along the x-axis of the pressurized crack is
presented in Table 4. The over all results show that the program using quadratic elements (i.e. TWODQ)
gives more accurate results compared to the program using constant elements (i.e. TWODD).

4.2. Curved cracks

Curved and kink cracks may occur in cracked bodies (Shou and Crouch, 1995). The proposed method is
applied to the problem of a 45° circular arc crack under far field biaxial tension (Fig. 6). The program
TDQCR?2 (using quadratic displacement discontinuity elements with two special crack tip elements at each
crack end) and the program TDQCRI1 (using quadratic displacement discontinuity elements with only one
special crack tip element at each crack end) have been developed for the analysis of the crack problems.
Analytical values of the Mode I and Mode II stress intensity factors, K; and Kjj, and strain energy release
rate, G for a general circular arc crack under biaxial tension given by Cotterell and Rice (1980) as

1

o m’sin% : Lo nrsin%
Ki=gcos | — 5|, Ku=osing|—-
411+sin"% 411+sin"%

1
3
1 —1?

and G=
an z

(K +K7p) (26)

Table 3
Comparison of variation of the displacement discontinuity D,/b X 10* along the surface of a pressurized crack using ordinary
(constant) elements and higher order elements displacement discontinuity methods without using any special crack tip element

x/b D,/b x 1000

Distance from crack tip Const. Elems. (TWODD) Analytical results Quad. Elems. (TWODQ)
0.0 4.046 3.980 3.980
0.086 4.032 3.946 3.966
0.171 3.989 3.901 3.922
0.257 3.916 3.827 3.848
0.343 3.812 3.720 3.741
0.429 3.673 3.578 3.599
0.514 3.497 3.396 3.419
0.600 3.276 3.168 3.193
0.686 3.000 2.882 2.909
0.771 2.654 2.520 2.556
0.857 2.203 2.040 2.094

0.950 1.536 1.237 1.309
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Table 4
Variation of the normalized normal stress, ¢,/P near the crack tip and along the x-axis of the pressurized crack problem

(x = b)/b o,/P

TWODD ANALYTIC Higher order elements
0.04 3.022 2.641 2.845
0.08 1.783 1.648 1.719
0.12 1.294 1.221 1.259
0.16 1.021 0.973 0.998
0.20 0.844 0.809 0.826
0.24 0.718 0.691 0.704
0.28 0.623 0.602 0.612
0.32 0.549 0.532 0.541
0.36 0.490 0.475 0.483
0.40 0.441 0.429 0.435

]

Fig. 6. Circular arc crack under uniform biaxial tension (Shou and Crouch, 1995).

Considering a circular arc crack (o = 45°) under biaxial tension, ¢ = 10 MPa with a radius of » =1 m.
The modulus of elasticity and Poisson‘s ratio of the material are taken as £ = 10 GPa and v = 0.2. The ana-
lytical values of the problem are obtained from Eq. (26) as G = 11.47 x 10> and based on the o-criterion,
the crack propagation angle, 0y = 20.90° (degrees) (Whittaker et al., 1992). The numerical solution of this
problem have been obtained by using two higher order displacement discontinuity programs TDQCRI1
(using one special crack tip element at each crack end), and TDQCR2 (using two special crack tip elements
at each crack end). The numerical values for G and 6, are given in Tables 5 and 6; and Figs. 7 and 8§, con-
sidering the two cases: (i) using a small crack tip element length L equal to 0.5° (i.e L/b=10.011) and dif-
ferent number of nodes along the crack and (ii) using 60 nodes along the crack and different crack tip
element length ratios (i.e. different L/b ratios). Comparing the numerical results of these two cases with
the analytical results show that the results obtained by the program TDQCR?2 are somewhat superior to
those obtained by the program TDQCRI specially when using relatively smaller number of nodes along
the crack. The effect of L/b ratio on the results given by the program TDQCR2 is also negligible. Although
the results obtained by both programs are in good agreement with the analytical results but in most cases
the results obtained by the program TDQCR?2 are preferred and can be used for the analysis of crack prob-
lems in rock fracture mechanics.
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Table 5

The numerical values of the strain release rate, G for a circular arc crack (« = 45°), using different number of nodes along the crack with
a 0.5° crack tip

Number of nodes The strain energy release rate G x 107> Crack initiation angle 6, (degrees)
TDQCR2 TDQCRI1 TDQCR2 TDQCRI1

6 18.92 23.82 23.13 22.58
12 13.99 16.44 21.57 21.57
18 12.55 14.25 21.17 21.26
24 11.94 13.24 21.01 21.12
30 11.61 12.68 20.93 21.05
36 11.43 12.34 20.90 20.99
42 11.32 12.11 20.88 20.96
48 11.27 11.94 20.86 20.93
54 11.21 11.82 20.85 20.92
60 11.20 11.73 20.85 20.91
Table 6

The numerical values of the strain release rate, G for a circular arc crack (o« = 45°), using different L/b ratios and 60 nodes along the
crack

L/b ratio The strain energy release rate G x 10>
TDQCR2 TDQCRI1

0.005 13.47 15.53
0.010 11.75 12.92
0.015 11.34 12.18
0.020 11.20 11.85
0.025 11.15 11.68
0.030 11.13 11.58
0.035 11.13 11.51
0.040 11.14 11.47

The strain energy release rate G for a 45 degree circular arc crack

25
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[=]
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o
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= 154
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S 101
o
e
[
=
(1)
£ 5
«©
s
»n

0 T

6 12 18 24 30 36 42 48 54 60
Number of nodes along the crack

Fig. 7. The strain energy release rate, G for a circular arc crack (o = 45°).
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The strain energy release rate G for a 45 degrees
circular arc crack using different L/b ratios

20

18 1 —&— TDQCR2
—@— TDQCR1
—>— ANALYTIC

strain energy release rate (G/1000)

L
8 4
6 4
4 T T T T T T
0.005 0.01 0.015 0.02 0.025 0.03  0.035 0.04

L/b ratio

Fig. 8. The strain energy release rate, G for a circular arc crack (a = 45°).

4.3. Circular holes with two emanating cracks

In order to show the benefit of both higher order elements and special crack tip elements explained above
the example problem shown in Fig. 9 is solved numerically by the higher order displacement discontinuity
method using quadratic displacement discontinuity elements for crack analysis (i.e. the programs TDQCRI1
and TDQCR?2). The following assumptions are made to solve this problem numerically: the far field stress
o = 10 MPa, the hole radius R = 1 m, modulus of elasticity £ = 10 GPa, Poisson’s ratio v = 0.2, and Mode
I fracture toughness K;c =2 MPa m'’? (for a typical hard rock under plane strain condition).

The analytical value of the normalized stress intensity factor Ki/(cv/nb) obtained from the solutions
given by Sih (1973) is about 1.96, for /R = 0.4. The numerical result of the normalized stress intensity
factor K/(c+/nb), for b/R = 0.4 using 90 nodes along the hole and 49 nodes along each crack, for different
L/b ratios (i.e. the ratio of crack tip element length L to the crack length b) are shown graphically in Fig. 10.

—>>g=0
—— —
X
—-—— —

}
f

}
f

Fig. 9. A circular hole with two emanating cracks of length » under far field uniform tension.
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The stress intensity factor for the problem of the circular hole
with two cracks, for b/R= 0.4

21
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G 2.051 —&— TDQCR1
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g 2
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£
[
it 1.954
Q
N
®
£
o 1.91
z

1.85

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25
I/b ratio

Fig. 10. The normalized stress intensity factor Ki/(av/nb), for b/R = 0.4 and different //b ratios.

The numerical results show that with L/b ratios between 0.1 and 0.2, the numerical results are accurate (in
most cases the error is less than about 0.5%).

4.4. Crack problems in semi-infinite plane

The problem shown in Fig. 11 has been solved with the semi-infinite displacement discontinuity method
using quadratic elements and special crack tip elements at each crack tip , considering the two limiting cases
of pressurized circular holes having four cracks with (i) no pressure penetration (empty cracks), and (ii) full
pressure penetration (fully pressurized cracks). The results of the normalized Mode I and Mode II stress

Fig. 11. A pressurized circular hole with four radial cracks at depth C in a semi-infinite body.
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intensity factors K1/(pv/npR), and Ky1/(p/7pR), and the crack propagation angle 0y, for these two extreme
cases (i.e. empty cracks and fully pressurized cracks) against different normalized depths from the free sur-
face of the half plane (C/R ratio), have been calculated numerically and given in Tables 7 and 8, respec-
tively. All the results are numerically calculated by using 20 quadratic elements along the hole and 10
quadratic elements along each crack, with a constant value of p = % =25 R=1m,and p =06 =10 MPa.
The analytical values of the normalized Mode I and Mode II stress intensity factors K;/(py/npR) and
Ky /(pv/7pR) and the crack initiation angle 0, for the problem of a pressurized circular hole with four sym-
metric radial cracks in a an infinite plane are given by Ouchterlony (1983) as: Ki/(pv/7pR) = 0.1966,
Ku/(py/mpR) = 0.0, and 6y =0.0 for the empty cracks; and Ki/(p\/wpR) = 0.9085, Ky1/(p/7pR) = 0.0,
and 6y = 0.0 for the fully pressurized cracks, respectively.

Table 7
The normalized stress intensity factors K1/ (py/7pR), and Ky /(p/7npR), and the crack propagation angle 6y, for a pressurized hole with
four empty radial cracks at different depths (C/R ratios)

C/R ratios K1/(pv/mpR) Ku/(pv/mpR) 0o (degrees)
Up. crack Lo. crack Up. crack Lo. crack Up. crack Lo. crack

2.0 0.8473 0.4247 0.1056 0.0008 —13.8 -0.2
2.25 0.7068 0.3668 0.0644 —0.0196 —10.2 6.1
2.5 0.6053 0.3354 0.0633 —0.0250 —11.7 8.4
2.75 0.5196 0.3141 0.0593 —0.0270 —12.7 10.0
3.0 0.4527 0.2977 0.0533 —0.0290 —13.1 10.1
3.25 0.3959 0.2792 0.0462 —0.0256 —13.0 10.3
35 0.3592 0.2703 0.0418 —0.0254 —12.9 10.6
3.75 0.3245 0.2628 0.0326 —0.0250 —11.3 10.7
4.0 0.3086 0.2570 0.0267 —0.0240 —10.4 10.5
4.25 0.2808 0.2510 0.0227 —0.0230 -9.1 10.3
4.5 0.2686 0.2478 0.0176 —0.0208 -74 9.5
4.75 0.2565 0.2441 0.0128 —0.0199 -5.7 9.2
5.0 0.2477 0.2410 0.0106 —0.0187 -4.9 8.8
Table 8

The normalized stress intensity factors K /(pv/7pR), and K11/ (py/npR) and the crack propagation angle 6y, for a pressurized hole under
the uniform inside pressure p, with four fully pressurized radial cracks at different depths (C/R ratios)

C/R ratios K1/(pv/7pR) Ku/(pv/mpR) 0o (degrees)
Up. crack Lo. crack Up. crack Lo. crack Up. crack Lo. crack

2.0 2.2036 1.3534 0.1954 0.0194 —10.0 -1.6
2.25 1.8940 1.2366 0.1230 —0.0307 -7.4 2.8
2.5 1.6993 1.1766 0.1285 —0.0465 -8.6 4.5
2.75 1.5298 1.1352 0.1229 —0.0565 -9.1 5.7
3.0 1.3937 1.1022 0.1109 —0.0626 -9.0 6.5
3.25 1.2690 1.0578 0.0949 —0.0552 -85 5.9
35 1.1927 1.0392 0.0862 —0.0573 —8.2 6.3
3.75 1.1116 1.0230 0.0609 —0.0587 -6.2 6.5
4.0 1.0344 1.0085 0.0470 —0.0580 =55 6.5
4.25 1.0114 0.9960 0.0362 —0.0573 —4.1 6.5
4.5 0.9863 0.9903 0.0223 —0.0523 =25 6.0
4.75 0.9582 0.9816 0.0091 —0.0510 —1.1 5.9

5.0 0.9390 0.9745 0.0044 —0.0487 —0.5 5.7
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Figs. 12 and 13 are based on the normalized stress intensity factors given in the Tables 7 and 8,
which compare the different results obtained for the upper cracks (the cracks near to the free surface of
the half plane), and the lower cracks, with the available analytical results of the circular pressurized hole
in an infinite plane (Ouchterlony, 1983). The numerical results show that as the depth of the circular pres-
surized hole (C/R ratio) increases the mixed mode stress intensity factors K; and Kj;, and the crack prop-
agation angle 0, tend to their corresponding analytical values of the circular pressurized hole in an infinite
plane.

Effect of depth on the mixed mode stress intensity factors,
for the 4 empty radial crack problem

—&— Up. Crack
—— Lo. Crack
— — Up. Crack
—¢— Lo. Crack
—— Analytic

Normalized Stress intensity factors

————— Mode I

0 I f t t t t f f f y
p 225 25 275 3 325 35 375 4 425 45 475 $

L —y

C/R ratio

Fig. 12. The normalized stress intensity factors Ki/(py/npR) and Ky /(py/7pR), for different C/R ratios, for a pressurized hole with
four empty radial cracks in a semi-infinite rock mass.

Effect of depth on the mixed mode stress intensity factors,
for the fully pressurized 4 radial cracks problem

2.5
—&— Up. Crack
2 —— Lo. Crack
— — Up. Crack
—<— Lo. Crack
15 Analytic

Mode |

Normalized Stress intensity factors

225 25 275 3 325 35 375 4 425 45 475

C/R ratio

Fig. 13. The normalized stress intensity factors K/(py/7pR) and Ky /(pv/7pR), for fully pressurized radial cracks emanating from
a pressurized hole at different depths, in a semi-infinite rock mass.
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5. Conclusion

The effect of using one and two special crack tip elements and also the effect of using higher order dis-
placement discontinuity in two dimensional infinite and semi-infinite crack problems have been investi-
gated. The complete and proper solutions and formulations are explained and given in the text and
Appendix A. This method is modified to include, the finite, infinite, and semi-infinite problems using higher
order (quadratic) displacement discontinuity elements. Several simple and mostly used example problems
are selected and explained to verify the proposed modifications and improvements in the higher order dis-
placement discontinuity method. At the end a somewhat more complicated and useful semi-infinite crack
problem is solved and the numerical results are compared with the analytical values of the same problem in
an infinite plane. It has been shown that as the depth of pressurized hole increases the problem changes to
that of the infinite plane case. Therefore, it is concluded that the numerical results obtained by using the
modified semi-infinite program gives very accurate results. This method is also modified for crack initiation
and propagation analysis. Although any mixed mode fracture criterion can be implemented to this numer-
ical code, but in this work, based on the linear elastic fracture mechanics (LEFM) principles, the maximum
tangential stress criterion or o-criterion is employed to investigate the crack initiation and propagation
direction.

Appendix A. The integrals and their derivatives used for one and two special crack tip elements for both infinite
and semi-infinite plane problems

A.1. The integral and its derivatives for one special crack tip element

I, = / gnf(x — &)’ + 7t de

a

Icﬁx:/ Mdﬁz.&/ﬁ — A,
=)

a 8§y
I, = / .
Y () + 7] 1

Loy =04,

Lo = =4 — A, = —Iyy
Loy =A1x+24,,,

Loy =241, + 14y,

The following formulae (derivatives) are also required for treatment of the traction free half-plane
problems:

chx,wy = 2Al,xy + yAl,xyy
Loy = 3415 + yALyW
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where, A4,, A>, and the derivatives of 4,, are defined as
a _l
P g —
—a [(x —&)” + 7]

2a —2v/2 2
O.S(cosqo— G) sin go) In=2 apCosg t+p + <smqo+ (y) cos (p)
., 2a + 2v/2ap cos ¢ + p?
= p .
242
X arctan (szsmqj

—2a
4 g
y :/ e g,
T w =+

2a — 2v/2 2
0.5 (cosq) + <y> sin (p) In=¢ apeose +p + (sm(p + ( ) cos (p)
2a + 2v2ap cos ¢ + p? y

2v2
x arctan <7ap i 4

(NI

p* —2a
where
p=(*+)") and ¢ =0.5arctan (ﬁ)
and the derivatives of A, are

A= p ' Alxl — 4,
2p

Ay, = p 'Alyl — FAI

Apy = 1A1x2—2—A1 Xl + yA1 2x4A

Al,W:p‘1A1y272—pSA1yl Zpy Ay — 2y4A1V

Ay = p 4133 f%/nxz f%/ﬂxl +x;3y2A1 - 2p4A1W
Al,m,:p‘1A1y3f%A1y2—uAl 4200 _y)Al xz_gyzALy 2%4/11,”

where

Alxl = CN1 x FLX + FL x CN1X + CN2 x TX + TC x CN2X

Alyl = CN1 X FLY + FL x CN1Y + CN2 x TY + TC x CN2Y

Alx2 = CN1 x FLXY + FLX x CN1Y + FL x CN1XY + FLY x CN1X + CN2 x TXY
+ TX X CN2Y + TY x CN2X + TC x CN2XY

Aly2 = CN1 x FLYY +2 x FLY x CN1Y + FL x CN1YY +2 x TY x CN2Y + CN?2
X TYY + TC x CN2YY

Alx3 = CN1 X FLXYY +2 X FLXY x CN1Y + FLX x CN1YY + 2 x FLY x CN1XY
+ FL x CN1XYY + FLYY x CN1X + 2 x CN2Y x TXY + CN2 x TXYY + TX
X CN2YY 42 x CN2XY x TY + TYY x CN2X + TC x CN2XYY

Aly3 =3 x CN1Y x FLYY + CN1 x FLYYY +3 x FLY x CN1YY + FL x CN1YYY
4+ 3 X CN2Y X TYY +3 X TY x CN2YY + CN2 x TYYY + TC x CN2YYY
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The three form of terms CNs, FL’s, and T’s are necessary to be defined, for the above equations, and are

given, respectively, in the following formulae.

(i) The terms CNI, CN2, CNIX, CN2X, etc. are defined as

CN1 = 0.5<cos @ — C) sin (p>

CN2 =sin ¢ + (E) cos ¢
Y

CN1X = (CN1),, = 0.5(CP2 — (SNP +x x SP2)/y)

CN1Y = (CN1) = 0.5(CP3 —x x SP3/y +x x SNP/y")
CN1XY = (CN1),,
CN2X = (CN2) , = SP2 + (CSP +x x CP2)/y

)
CN2Y = (CN1)
CN2XY = (CN2)

= SP3 —x x (CSP —y x CP3)/y*

Wy
xy

where

SNP = sin ¢ = sin {0.5 arctan C—Z)]
CSP = cos ¢ = cos {0.5 arctan (X)}
X
CP2 = (cos @), =y x SNP/(2p*)
CP3 = (cos @) , = —x x SNP/(2p*)

CP4 = (cos ), = (2(x* —)?) x SNP +xy x CSP)/(4p%), etc.,

and
SP2 = (sin ), = —y x CSP/(2p*)
SP3 = (sing) , = x x CSP/(2p%)

5%

SP4 = (sin ), = (2(y* — x) x CSP +xy x SNP)/(4p"%), etc.

(i1) The terms FL, FLX, FLY, etc. are defined as
FL = In(DL1/DL2)
FLX = FL1X — FL2X
FLY = FL1Y — FL2Y
FLXY = FL1XY — FL2XY ,etc.,

where

FL1X = DL1X/DL1
FL2X = DL2X/DL2

FL1XY = (FL1X) = —DL1Y x DL1X /(DL1)* + DL1XY /DL1

Py

FL2XY = (FL2X) = —DL2Y x DL2X /(DL2)* + DL2XY /DL2, etc.,

B

= 0.5(CP4 — (y x SP3 — SNP — x x SP2)/y* — x x SP4/y), etc., and

= SP4 — (CSP + CP2) /" + (CP3 +x x CP4) [y, etc.,
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with

DLl =2a — 2\/2_apcos @+ p*

DLIX = (DL1), = —V2alx x CSP/p* +y x SNP/p*] + x/p?

DL1Y = (DL1) , = —V2aly x CSP/p® — x x SNP/p*| + y/p

DL1XY = (DL1),, = —V2a[-2xy x CSP + (x* — y*) x SNP]/(2p") — xy/p",etc., and
DL2 = 2a + 2\/%;) cos ¢ + p*

DL2X = (DL2) . = V2alx x CSP/p* + y x SNP/p’] + x/p*

DL2Y = (DL2) , = /2aly x CSP/p* — x x SNP/p*| + y/p*

P

DL2XY = (DL2) , = v/2a[—2xy x CSP + (x> — y*) x SNP|/(2p") — xy/p®, etc.

(iii) The terms TC, TX, TY, TXY, TYY, etc. are defined as

C = arctanzzzaﬂ and
p?—2a

TX = DT1/DT

TY = DT2/DT

TXY = (IX) = —DTY x DT1/(DT)* + DT1Y/DT

P4
TYY = (TY), = —DTY x DT2/(DT)* + DT2Y /DT, etc.,
where
DT = p* — dap® cos 2¢ + 4d*
DTY =2y — 4a(ycos2¢ — xsin2¢)/p*
DTYY =2,

DT1=2v2a[RY1 x PY1+RY2 x PY2)]
DT1Y = (DT1) ,=2v2a[-RY11 x PY1 —RY1 x PY11 +RY21 x PY24+RY2 x PY21] and

v

DT1YY = (DT1)

Wy

=2v2a[~RY12x PY1 —2RY11 x PY11 —RY1 x PY12+RY22 x PY2+2RY21 x PY21 + RY2 x PY22]
DT2=2v2a[RY1 x PY4—RY2 x PY3]
DT2Y = (DT2) ,=2v2a[RY11 x PY4+RY1 x PY41 —RY21 x PY3—RY2 x PY31] with

P

DT2YY = (DT2),,
=2v2a[RY12 X PY4+2RY11 x PY41 +RY1 x PY42 — RY22 x PY3—2RY21 x PY31 —RY2 x PY32)

PY1 =y x CSP +x x SNP
PY2 =y x CSP —x x SNP
PY3 =x x CSP +y x SNP
PY4 =x x CSP — y x SNP
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PY12 = CSP +x x PY4/(2p*)

4xy x PY4 + x> x PY1
4p8

PY12 = —x x SNP/p* —

PY21 = CSP — x x PY3/(2p%)

dxy x PY3 — x> x PY2
4p8

PY22 = —x x SNP/p* +

PY31 = SNP +x x PY2/(2p*)

Xy X PY2+x x PY21
I 2p¢

PY41 = —SNP — x x PY1/(2p%)

PY32 =x x CSP/(2p*)

PY1
PY42 = —x x (CSP + PY11)/(2p") ﬁ% and
_ _ 4 2
RYl:L, RYIl =2, RY1D = Z2P"
2p 4p3 8p?
_ _ 2 4 2
RY2=2 Ry21 = 3ay, Ry = =320 = Ty)
PE 207 4p1

A.2. The integrals and their derivatives for two special crack tip elements

1689

1 2 1
Starting with the integrals /¢ and /¢ given in Section 3, the first integral /c = /.. and its derivatives are the

same as those given in A.l of this appendix. The integral /¢ and its derivatives are as follows:

2 4 1
Ic = / &lnf(x —&)* + 2 de

a3 a 3 a s
oo [ g [ [ ety
—a [(x—&)" +57] —a [(x —&)” +7] —a [(x —&)" + 7]
3

a 3

SIS

2

Iey = yAz,x

2

ICJ{V = yAZ,y + AZ

2

IC,xyy = yAZ,xy + AZ,x
2

Loy = 4,5, + 245,

and for the semi-infinite case the following derivatives are also needed:

2
Ty = ¥4y + 2424

2
IC,}yyy = yAZJ’yy + 3A2yv

where, A; and its derivatives are given in section A of this appendix, 45 and, 4, and its derivatives which

needed for infinite and semi-infinite plane problems, are given as
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3
o5

a & 2
Ay = —————de=—-(2a
[ o3

and A, and its derivatives can be written as

Ol

+ 2xA4, — ()c2 +y2)A]

a % 2 2 2
4, = / 8—_2(18 = 2(251)% er +y (0] - 02) + 2xA4; = 2(2 )% ulo‘y + 2xA,
ol =) 4] 2y 2y
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AZ,x B y ]OU"_ [Oy+2-XA1x+2A1
24
Py, P
Az,y == 2y [OAVW + 2y ]O.y + zxAly
x2 42 2
Aoy = 2yy Loy FpA > ony += IOW IOAy + 2xA1 4 + 241,
x>+ x?
AQ/W 2yy onv}+2y2 0 ]0W+ ]()y—‘y-z_XAly1
X +)? 3y — x? x
Ax 1«\’V+2 ]v + 10x+ IO ) 2*]0 +2'-’5141,x +2A1
2y = 2y 0.5 2y 0.y yzy y;y} 32 Wy Wy Wy
x? +
Aoy = 2yy oy + 35 2y o + 35 oy = loy o+ 2y
and for the semi-infinite case the following derlvatlves are also needed:
x2 42 ¥ —x 3x? 3x? x 3x
AZ,XJ{yy P IOxyyyy +3—=— 2 B) IO,xyyy + ?Io,xyy - y_4]04xy +;]0,yy_vy - )710,){}3)
6x 6x
+ y_IOW - FIOy + 2xA1 py + 241 330
X+ —x2 6x> 12x? 12x2
Azyyyy = zyy Lo gy + 4y 27 Loy + IOW - 7[0«w + y_510,y + ZXAIJW)’
where
Iy = / In[(x —¢)® —|—y2]%ds =y(0, —0) — (x—a)In(r) + (x+a)In(r,) — 2a
7[0
Ipy=—=Inr —In
0 O r )
Loy, =0, -0,

A (@ (x+ a)) .

r ”2
x—a’—» (x+a)’—)

IO:X,W - - rzlt - rg =1 0,xxx

(x—a) (x+a)
Loy = —Zy( r‘f - rAZ; = _[O,JCXy

(x—a)(ri —4%) +a)(i-4)
Loy = =2 6 6
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3x—a) —3* 3(x+a)’—)?
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and for the semi-infinite case the following derivatives are also needed:

Toagyy = 24y (E= =0 =) (xta)((x+a) — )

Y.

_ Lo yny —8? 5(x— a)z -y S(x+a)

1 0wy

The terms 0, 0, r; and r, are defined in Eq. (9) in Section 2.1.
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